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SUMMARY 

Multiblock methods are often employed to compute flows in complex geometries. While such methods 
lend themselves in a natural way to coarse-grain parallel processing by the distribution of different blocks 
to different processors, in some situations a fine-grain data-parallel implementation may be more 
appropriate. A study is presented of the resolution of the Euler equations for compressible flow on a 
block-structured mesh, illustrating the advantages of the data-parallel approach. Particular emphasis is 
placed on a dynamic block management strategy that allows computations to be undertaken only for 
blocks where useful work is to be performed. In addition, appropriate choices of initial and boundary 
conditions that enhance solution convergence are presented. Finally, code portability between five different 
massively parallel computer systems is examined and an analysis of the performance results obtained on 
different parallel systems is presented. 
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1. INTRODUCTION 

Computational fluid dynamics (CFD) methods are generally based on the resolution of a set of 
partial differential equations-such as the Euler equations for inviscid flow or  the Navier-Stokes 
equations for viscous flow-that describe the continuum behaviour of the fluid. These differential 
equations are discretized using e.g. a finite difference, finite element or finite volume method 
and the resulting set of algebraic equations is solved on a computational mesh that covers the 
physical flow domain. For the computation of flows in complex geometries the rnultiblock method 
is widely employed. This method is based on the partitioning of the flow domain into a number 
of subdomains (blocks). Block-structured meshes are generally unstructured at the block level 
but retain a structured nature within each block. Multiblock methods provide an alternative to 
the use of a completely unstructured mesh and, depending on the problem at hand, may offer 
certain advantages, such as the use of simpler and more efficient algorithms to resolve the 
required flow equations. 

Parallel techniques for the above-mentioned CFD methods are based on the computation of 
the flow values at  different mesh points on different processors. Block-structured meshes exhibit 
both a coarse-grain parallelism at the block level and a fine-grain parallelism at the mesh point 
level. For efficient parallel computation the granularity of the problem needs to be matched to 
that of the parallel computer employed. Coarse-grain parallelism has been exploited in CFD 
calculations by a number of researchers using either shared-memory multiprocessor compu- 
t e r ~ ' - ~  or distributed-memory massively parallel MIMD (multiple-instruction, multiple-data) 
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computers.’”’-6 These implementations have employed a control-parallel programming model 
whereby different blocks are computed in an independent manner on different processors, with 
information being transferred between blocks using either the (virtual) shared memory or 
message passing. 

Control-parallel multiblock methods can be efficiently employed if the mesh is comprised of 
blocks having equal computational work, the computer has processors of equal computational 
power and the number of blocks is equal to or a multiple of the number of processors. Under 
these conditions load balancing between processors ensures that there is minimal processor idle 
time. For many flow computations the mesh is specially designed such that these requirements 
are met. Since generating an appropriate block-structured mesh for a complex geometry may 
take longer (in ‘real’ time) than the resolution of the flow equations on the mesh, it is desirable 
that parallelization constraints are not imposed on the mesh generation procedure in addition 
to the existing geometrical constraints. Generally, except for very complex 3D geometries, the 
number of blocks that is consistent with the geometrical constraints is of the order of ten(s). 
Therefore, without further subdivision, Computations can only be performed with such block- 
structured meshes using computers with a limited number of processors. A further complication 
for the efficient implementation of control-parallel multiblock methods arises from the fact that 
the computational work of a block is not necessarily determined solely by the number of mesh 
points in the block. Depending on the nature of the flow to be computed, some blocks may 
require a larger number of iterations to obtain the desired level of convergence. If the final 
converged solution has been obtained in a block, further iteration will not entail useful work 
even though the floating point operation count will increase. To take account of such behaviour, 
various dynamic load-balancing algorithms have been proposed, such as the ‘demand decom- 
position’ technique described in Reference 5. 

The fine-grain parallelism exhibited at the mesh point level of a structured mesh is well suited 
to the data-parallel programming model whereby different processors undertake the necessary 
computations of different mesh points in a synchronous manner. Data-parallel techniques have 
been employed by a number of authors in recent years for CFD applications on SIMD 
(single-instruction, multiple-data) computers, both for single-block-structured and 
unstructured meshes. I Data-parallel implementations on present-generation parallel compu- 
ters generally make use of a Fortran-90-based language to render implicit the distribution of 
work to the different processors. This greatly simplifies programme coding and enhances 
portability. Such implementations have been found to be very efficient for local approximation 
techniques such as employed in the above-mentioned CFD methods. 

While the application of the data-parallel programming model to date appears to have been 
limited to computations based on single-block-structured meshes and unstructured meshes, it 
can also be employed for computations using block-structured meshes. A study has therefore 
been undertaken to investigate a serial data-parallel multiblock method whereby individual blocks 
are treated in a sequential manner, the solution in each block being computed using a 
data-parallel approach. The present paper provides an illustration of the advantages that this 
method affords. In Section 2 the flow equations and the test case considered are presented, while 
the numerical implementation employed is described in Section 3. Since the different blocks are 
treated in a sequential manner, a relatively simple dynamic block management procedure has 
been employed as described in Section 4. The serial data-parallel multiblock method has been 
implemented on five different massively parallel processing (MPP) systems; a brief overview of 
these systems is given in Section 5. Code portability between the different systems is discussed 
in Section 6. Finally, Section 7 presents an analysis of the performance results obtained on 
different MPP systems. 
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2. FLOW EQUATIONS AND APPLICATION 

The Euler equations governing inviscid compressible flow can be written in a conservative law 
form in a two-dimensional (x, y) Cartesian co-ordinate system as 

a a a 
at ax  aY 
~ w + - F(w) + - G(w) = 0, 

where 

Here p is the mass density, p is the pressure, E is the total energy and (u, u) are the (x, y) 
components of the flow velocity. The above system of equations is closed via the equation of state 

p = p(y - 1)[E - + u2)-j, 

where y is the ratio of specific heats ( y  = 1.4). 
As an application we consider here the flow in a supersonic air intake. A freestream Mach 

number of 1-865 and a back pressure (static pressure at diffuser exit/freestream total pressure) 
equal to 083 have been imposed. The resulting flow, as shown in Figure 1, is characterized by 
an oblique shock that impinges on the cowl lip, followed by a series of reflected shocks in the 
diffuser section. After termination by a normal shock the flow becomes subsonic. A study of 
this simplified two-dimensional case can yield valuable information on the optimization of air 
flow at the diffuser exit. This flow case has been studied by the French aircraft engine 
manufacturer Snecma in the development of a power plant for the replacement of the Concorde 
supersonic aircraft.' * 

Figure 1. Pressure contours for inviscid flow in a supersonic air intake. The straight lines represent the block boundaries 
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3. NUMERICAL IMPLEMENTATION 

The serial data-parallel multiblock method has been implemented in a relatively simple code' 
that solves the time dependent Euler equations for two-dimensional, inviscid, compressible flow. 
Results obtained using a data-parallel single-block version of this code have been reported 
previously.' 

3.1. Discretization 

The Euler equations are discretized in space using a finite volume formulation with a central 
difference scheme. Numerically induced oscillations near discontinuities (shock waves) are 
damped by the addition of a second-order artificial dissipation term. A fourth-order dissipation 
term is included to damp odd/even oscillations permitted by the numerical scheme. The resulting 
set of discretized equations is integrated in time using an explicit five-stage Runge-Kutta scheme. 
To enhance convergence to the required steady state, a local time-stepping technique is employed. 

3.2. Computational mesh 

To compute the flow field in the air intake, a block-structured mesh comprised of eight blocks 
has been employed. The construction of this mesh has been based on geometric considerations, 
with smaller blocks allocated to regions of greater interest (see Figure 1:). Each block contains 
the same number of mesh cells; this choice is not related to load-balancing concerns but to the 
algorithm employed in the code, which is restricted to directly connected blocks. The number 
of mesh cells in each block (124 x 124), however, has been chosen to maximize performance on 
the MPP systems employed (see Section 7). While a control-parallel method could be efficiently 
used for such a block-structured mesh on a computer system comprised of eight processors of 
equal performance, additional artificial subdivision of the mesh would be required for larger 
parallel systems. 

3.3. initial and boundary conditions 

An extensive study of the air intake problem has shown that the convergence of the solution 
procedure is particularly sensitive to the initial conditions and the boundary condition imposed 
at the diffuser outflow. Therefore, to maximize code performance-measured with respect to the 
computer time required to obtain the required flow solution-appropriate optimization of the 
initial and boundary conditions is crucial. 

Indeed, by simply imposing freestream conditions throughout the flow domain and the back 
pressure fixed at the required value of 0.83, it has been observed that the normal shock in the 
diffuser section is not stabilized and thus convergence is not obtained. This problem can be 
avoided by setting the initial flow solution to include a normal shock in the diffuser section. 
For convenience the initial position of the normal shock has been chosen to correspond to a 
block boundary. Downstream of the normal shock the initial flow is subsonic and determined 
from the standard normal shock relations. Supersonic flow was initially set in four of the eight 
blocks and subsonic flow in the four blocks in the downstream section of the diffuser. 

This choice of initial condition enables the outflow to be always subsonic. A non-rejecting 
outflow boundary condition for subsonic flow based on the following differential e q ~ a t i o n ' ~  has 
been employed: 
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where p ,  = O.83pT,, is the required outflow pressure and a is a parameter chosen to optimize 
the convergence rate (a = 1.25 for the present computations). 

The above-described non-reflecting boundary condition has been found to be necessary in 
the initial stages of the solution procedure. Once the outflow pressure has stabilized close to the 
required value p,,  this value is directly imposed. In practice the non-reflecting boundary 
condition is imposed only during the iteration to the first convergence level (see Section 4), 
allowing a significant saving in computation time. 

3.4. Code structure 

The code employed in the present study stores in global arrays the values of the flow quantities 
throughout the flow domain. For the serial data-parallel multiblock method the global values 
for one block are copied to corresponding local arrays which contain an additional exterior 
layer of ‘ghost cells’ to provide data locality and facilitate the application of boundary conditions. 
The computation is performed using the local arrays in a manner similar to that for a single-block 
mesh.’ The updated local array values are then returned to the global arrays. Data are transferred 
between different blocks (block connectivity) at each time step via the global arrays in an implicit 
fashion using the globally addressable memory. After the global array elements for one block 
are updated, the other blocks are treated in a sequential manner. 

The code is written entirely in Fortran 90, using array assignments and intrinsic functions. 
Data distribution directives are used to map the arrays to the processors in such a way as to 
minimize communication (see Section 7). Extensive use is made of intrinsic functions, particularly 
the CSHIFT function that causes a circular shift of the array values by one element, either 
row-wise or column-wise. 

4. DYNAMIC BLOCK MANAGEMENT 

Since the blocks are treated in a sequential manner, a rather simple dynamic block management 
strategy has been employed. Every 20 iterations the values of the RMS (root mean square) 
residuals in each block (based on the local density) are calculated. The residual values are used 
to determine which of the blocks are to be considered for the next 20 iterations. The criterion 
for a block to be ‘on’ is that the maximum residual in the block or at the appropriate ghost 
cells in neighbouring blocks be greater than a predetermined convergence level. In this manner 
the computation is performed only in blocks where there is useful work to be done. Not only 
are blocks switched off to avoid unnecessary computations, but they are also switched back on 
should the development of the solution in a neighbouring block produce an influence. Initially 
the convergence level is set to 2.5 x lo-’. When all blocks are converged, this value is decreased 
by a factor of 10, all blocks are switched back on and further iterations performed. This procedure 
is continued until the RMS residual over the entire flow domain is less than 2 x lo-’, 
corresponding to a total decrease in the residual of five orders of magnitude. 

This dynamic block management strategy has been chosen to minimize the number of 
iterations required to obtain the converged flow solution and therefore to maximize the useful 
work performed. Such a strategy maintains the level of convergence in all blocks within certain 
bounds and thus avoids accumulation effects associated with large differences in the treatment 
of neighbouring blocks. 

Figure 2(a) shows the residual of each of the eight blocks employed as a function of the number 
of iterations. Figure 2(b) presents the residual over the entire flow domain as a function of work 
units (one iteration of one block being defined as one-eighth of a work unit). The two 
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Figure 2(a). Convergence history for each of the eight blocks 
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Figure 2(b). Maximum residual in the flow domain as a function of work units, both with (-) and without (----) 

dynamic block management 

curves of Figure 2(b) correspond to cases with and without the application of dynamic block 
management. 

From Figure 2(a) it can be observed that after a relatively small number of iterations 
(approximately 400) two blocks are switched off; a third block is switched off after 600 iterations 
and a fourth after lo00 iterations. The first two blocks correspond to the upstream section of 
the flow domain, the third to the region above the cowl lip of the air intake and the fourth to 
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the first block in the diffuser section. It should be noted that the flow in each of these regions 
is supersonic. Since the Euler equations are hyperbolic for supersonic flow, there is no upstream 
influence. (The same is valid, to a good approximation, for the discretized equations if the added 
artificial dissipation is sufficiently small.) Therefore, unless a subsonic region of the transient 
solution enters upstream, once the predefined convergence level is attained, no more useful work 
can be performed. Approximately 4OOO iterations are required before the first convergence level 
is attained, with an additional 5000 iterations required to reach each of the subsequent 
convergence levels. 

For the present problem Figure 2(b) demonstrates that employing the above-described 
dynamic block management leads to a reduction by a factor greater than two in the amount of 
work required to obtain the converged solution in the entire flow domain. In fact, for the majority 
of iterations i t  has been necessary to compute at most four of the eight blocks. The overhead 
required for the dynamic block management, both in coding effort and in computation time, is 
minimal. 

5. PARALLEL COMPUTERS EMPLOYED 

Computation of the air intake flow problem has been undertaken using the following MPP 
systems. 

MP-I and MP-2-MasPar Computer Corp. 

The MP-1 and MP-2 are STMD computers that employ the same architecture based on a 
two-dimensional torus grid." Each processing element (PE) consists of a simplified RISC 
processor with 64 kbyte of local memory. The X-Net communication network has a bandwidth 
of 1.25 Mbyte s- per PE between neighbouring PEs, while a global router provides communica- 
tion between arbitrary PEs with a bandwidth of 80 kbyte s - '  per PE. A fully configured system 
has 16k PEs, giving a total of 1 Gbyte of distributed memory and a peak 64-bit floating point 
performance of 0.55 and 2.4 Gflop s - '  for the MP-1 and MP-2 systems respectively. 

CM-200-Thinking Machines Corp. 

The CM-200 is an SIMD computer that uses a hypercube architecture.I6 Each node consists 
of 32 single-bit PEs, 4 Mbyte of local memory and a floating point accelerator. Communication 
between nearest neighbours on a Cartesian mesh uses the NEWS network with a bandwidth of 
40 Mbyte s-  ' per node; the global router provides more general communication. The largest 
CM-200 employed in the present study has lk  nodes with 4 Gbyte of distributed memory and 
a peak @-bit floating point performance of 10 Gflop s- '. 

CM-5- Thinking Machines Corp. 

The CM-5 is an MIMD system with each user partition consisting of both a control node 
and a number of processing nodes." Each processing node has a standard RISC Sparc 
microprocessor with four vector pipes (each having eight 64-bit registers or 16 32-bit registers 
using a vector length of 8) to a total of 32 Mbyte of local memory, providing a peak 64-bit 
floating point performance of 128 Mflop s - ' ,  Data are transferred between nodes via a network 
that uses a 4-ary fat-tree with a maximum bandwidth of 20Mbytes-' per node between 
neighbouring nodes. 



714 M. L. SAWLEY AND J. K. TEGNER 

T3D emulator-Cray Research Inc. 

The Cray T3D is an MIMD system with each PE containing a DEC Alpha RISC micro- 
processor having a peak 64-bit floating point performance of 150 Mflop s-' . ' '  The computa- 
tional nodes, each containing two PEs, are connected via a 3D torus network (300 Mbyte s - '  
per node between neighbouring nodes). The system contains either 16 or 64 Mbyte of memory 
per PE. Although a Cray T3D system has not been available for the present work, an emulator 
that runs on a Cray Y-MP has been employed to study code implementation. 

Each of the above MPP systems has a non-uniform memory access (NUMA) distributed 
memory whereby a PE (or node) can access its local memory faster than it can access the memory 
of other PEs. Such an architectural consideration has an important impact on the programming 
techniques required to achieve acceptable performance (see Section 7). 

All the above systems offer Fortran compilers that can make use of the data-parallel 
programming model. The syntax employed in these compilers is based on the Fortran 90 
standard, with a number of additions/modifications necessary for parallelization. In addition, 
the CM-5 and T3D systems provide other programming models (message passing, work sharing), 
although these have not been employed in the present study. 

6. CODE PORTABILITY 

The subject of code portability is of major importance, particulary for application software 
developed for parallel computer systems. Code portability is concerned with two principal 
aspects: compilation on different computer platforms and the ability to achieve an acceptable 
performance level. 

6.1. Compilation 

The use of standard Fortran 90 style has made relatively simple the task of compiling the 
code on each of the five above-mentioned MPP systems. In addition, the code has been compiled 
and run on both serial and vector/parallel computer systems. Particular deficiencies of the MPP 
systems that were found to require code modification to enable compilation include 

(1) the lack of standard data distribution directives (the systems employed in the present study 
used the CMPF MAP, CMFS LAYOUT, and CDIRS SHARED directives to achieve 
suitable array mappings) 

(2) the need for internal compiler directives on the Cray T3D (e.g. the CDIRS MASTER and 
CDI RS ENDMASTER directives to specify serial and parallel execution regions) 

(3) the lack of standard timing routines 
(4) features currently unavailable on the Cray T3D emulator (e.g. certain restrictions for 

do-loops and intrinsic function calls). 

6.2. Performance 

While adhering to the Fortran 90 standard has enabled the code to be run on serial, 
vector/parallel and MPP systems, it does not guarantee that the performance obtained on each 
of these platforms will be acceptable. Optimal code performance has been found to be inhibited 
by the following factors. 
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(1) Different MPP systems have different ‘canonical’ data distributions; non-canonical dis- 
tributions may cause performance degradation (e.g. the serial axes of the global arrays 
are placed first on the CM-200 and CM-5 but last on the MP-1, MP-2 and T3D). 

(2) While different means may be available in Fortran 90 for expressing the same operation, 
these are not always interpreted by the compiler in the same manner (e.g. on the CM-200 
direct array assignment may use the global router, whereas the equivalent CSHIFT function 
call uses the NEWS network). 

(3) The use of software library routines may greatly improve performance at the expense of 
portability (such routines, however, have not been employed to obtain the results presented 
in Section 7). 

(4) Optimized data-parallel code for MPP systems may have many redundant operations (e.g. 
for the treatment of ghost cells to avoid the need for masking and hence decrease 
overheads), resulting in poor performance on serial and vector computers. 

(5) The use of array syntax and calls to intrinsic functions can limit the length of vector loops 
to single programme statements, causing serious performance degradation on vector 
computers. 

Some of the above portability restrictions are due to the present immaturity of compilers; it is 
thus to be expected that portability problems may become less important in the future. However, 
the performance of the serial data-parallel multiblock method on MPP systems is strongly 
dependent on the ability of the compiler to interpret code in an efficient manner for data-parallel 
computations. This will in turn be dependent on both hardware and software considerations. 

7. CODE PERFORMANCE 

The study and comparison of code performance on different computer systems-and the 
interpretation of such comparisons-are fraught with danger. 1920 The goal of the present paper 
is not to present a benchmarking study for the present code, but rather to provide an indication 
of the programming effort required to obtain acceptable performance on the MPP systems 
considered. 

While five different MPP systems have been considered in the present study, performance 
figures are presented only for the MP-1, MP-2, CM-200 and CM-5 systems, since the data- 
parallel Fortran compiler for the T3D hardware has not yet been released. The results obtained 
on the CM-5 are based on a beta version of the system software and consequently are not 
necessarily representative of the performance of the full version of this software. 

The performance of the multiblock flow solver is determined by the time required for the 
following tasks: 

(1) copying flow values between the global and local arrays (before and after the computation 

(2) performing the computational kernel (computing the convective and numerical fluxes, time 

(3) implementing the boundary conditions 
(4) undertaking the block connectivity 
(5) input/output (e.g. reading mesh and initial flow values, writing solution). 

of each individual block) 

stepping) 

Each of the above tasks involves the transfer of data, which for the NUMA distributed-memory 
MPP systems used in the present study is a major concern. In order to maximize performance, 
the most rapid means of data transfer must therefore be employed (see Figure 3). (For serial 
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(high bandwidth network) 

distant PE rnernoty (global router) 

increasing increasing 
access time bandwidth 

Figure 3. Communication hierarchy for an NUMA distributed memory parallel computer 

and vector computers data transfer between arrays stored in memory is not a consideration; 
thus performance is generally determined by task (2).) 

For optimal performance of a control-parallel method the elements of a local array (corre- 
sponding to one block) are stored in the same local PE memory. This ensures that the 
computational kernel for each block can be performed by the same PE without communication 
with other PEs. In contrast, in the present data-parallel method the elements of both global and 
local arrays are distributed across different PEs. However, the distribution is chosen in such a 
way that all flow values for one mesh cell are stored in the same PE memory; copying flow 
values between the global and local arrays thus involves only local memory references. Task (1) 
can therefore be performed very efficiently. 

For a local approximation method, such as the finite volume method used in the present 
study, the computational kernel involves the addition and subtraction of neighbouring elements 
according to a stencil determined by the spatial discretization employed. The associated data 
transfer can be performed using the CSHIFT intrinsic function. If the number of array elements 
is less than or equal to the number of PEs, the CSHIFT operation will direct all PEs to obtain 
an array value from a different PE; the CSHIFT operation will therefore involve all remote 
memory references. For much larger arrays, however, the majority of the CSHIFT operations 
will involve local memory references. For NUMA distributed-memory MPP systems the 
efficiency of such an operation will therefore increase with the problem size.' This indicates that 
for optimal performance on a given MPP system the number of mesh cells in each block needs 
to be as large as possible; thus for a given size computational mesh the number of blocks should 
be minimized. This requirement will generally not be in conflict with the need to simplify the 
mesh generation procedure. The efficiency with which task (2) can be performed is therefore 
dependent on the efficiency of the CSHIFT operation, the number of PEs employed and the 
problem size (number of blocks and mesh cells). High-bandwidth networks are provided on the 
MPP systems to perform communication between neighbouring PEs. 

The implementation of the boundary conditions (task (3)) and block connectivity (task (4)) 
generally requires more complex patterns of data transfer. It is important that, if possible, the 
above-mentioned high-bandwidth networks are used rather than the slower global communica- 
tion network. For the present code implementation this consideration has necessitated the 
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replacement of array section assignment statements with the equivalent CSHIFT intrinsic 
functions to enforce the use of the fast network on the CM-200 and CM-5. 

The relative importance of input/output (task (5)) depends on the initialization procedure, 
the amount of data being read and written and where these data are stored (e.g. front-end disk, 
parallel disk array). For the present computation of the converged flow solution this contribution 
was of secondary importance and therefore not considered in the following performance 
figures. 

In Figure 4 is presented, for MP-1 and MP-2 systems with 16k PEs and CM-200 and CM-5 
systems with 512 nodes, the time required to perform the block connectivity (task (4)), the 
boundary conditions (task (3)) and the computational kernel (task (2)). The performance obtained 
using MPP systems of different sizes is shown in Figure 5. Since the same problem has been 
resolved for each system size, the performance is inversely proportional to the time required to 
obtain the converged flow solution. 

Figure 4 indicates that for the computation of the flow in the air intake the majority of time 
is spent performing the computational kernel. Nevertheless a significant fraction is also required 
for the implementation of the boundary conditions. The overhead required for block connectivity 
is acceptably low (about 7% for the MP-1, MP-2 and CM-5 systems, though substantially 
higher for the CM-200). These fractions could be reduced by the simultaneous application of 
boundary conditions and block connectivity on all four sides of each block, at  the cost of 
increased programming complexity and reduced generality. Measurements made for different 
size MPP sytems show that the block connectivity overhead remains approximately constant 
for the MP-1 and MP-2 systems, while the percentage of the total elapsed time required for the 
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Figure 5. Performance(64-bit) as a function of the size of the MPP system: 0, MP-I; V, MP-2; 0, CM-200; A, CM-5 

boundary condition implementation increases from 10% for lk PEs to 23% for 16k PEs. For 
the CM-200 the block connectivity overhead decreases from 18% for 128 nodes to 7.5% for lk  
nodes, while both the computational kernel and the application of the boundary conditions 
increases with increasing system size. In contrast, for the CM-5 the relative time required for 
the different tasks has been found to be independent of the system size in the range from 32 to 
5 12 nodes. 

Figure 5(a) shows that on both the MP-1 and MP-2 the performance scales linearly with the 
number of PEs employed. Such a scaling is to be expected, since the number of mesh cells in 
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each block is always greater than or equal to the number of PEs. Since each local array has a 
total of 128 x 128 elements, for a system with 16k PEs each PE performs the work for a single 
mesh cell. For systems having a smaller number of PEs, block (hierarchical) virtualization has 
been employed.' On the other hand, if a block-structured mesh with fewer cells per block was 
used, the performance on a system with 16k PEs would be degraded, since not all PEs would 
be active. The performance on the CM-200 and CM-5, presented in Figure 5(b), does not exhibit 
the same linear scaling with system size. Indeed, for the CM-5 the performance per node decreases 
significantly with increasing system size. Profiling information has shown that as the size of the 
CM-5 system increases, the ratio of time spent on communicating between nodes to that needed 
for floating point operations increases significantly. 

It is interesting to note that while the peak floating performance per PE of the MP-2 is over 
four times that of the MP-1, the performance obtained using the CFD code employed in the 
present study is only a factor of two larger. Thus, while a performance of approximately 33% 
of the peak value has been measured for the MP-1 system, only 17% of the peak value for the 
MP-2 is obtained. For both the CM-200 and CM-5 systems the measured performance for the 
present CFD code is only a small percentage of the peak performance of these systems. These 
observations reinforce the fact that the peak performance of an MPP system is not the sole 
relevant measure of its performance ability. The numerical method employed for the present 
flow calculations requires a high level of communication between PEs (or nodes); an efficient 
computation therefore necessitates a balanced MPP system with a sufficiently high communica- 
tion bandwidth. 

Finally, it should be remarked that the present study is concerned with the computation of 
a two-dimensional flow problem having a fixed number of mesh cells per block. A previous 
study' has shown that the performance obtained using a data-parallel approach depends strongly 
on the size of the computational problem. Higher performance levels are to be expected for 
high-resolution three-dimensional flows (e.g. for the direct numerical simulation of turbulent 
flows) and for more complex numerical schemes involving a greater number of floating point 
operations per iteration. 

8. CONCLUSIONS 

The present study has shown that the serial data-parallel multiblock method provides the 
following advantages. 

(1) It retains the simplicity of the data-parallel approach, each block being treated individually 
in the same manner as for a single-block computation. 

(2) It does not impose any parallelization constraints on the mesh generation procedure; in 
principle, any number of blocks of unequal size can be employed (although power-of-two 
size arrays are preferable for performance reasons). 

(3) The transfer of data between blocks (block connectivity) is performed in a transparent 
manner via globally addressable memory; this contrasts with the explicit data transfer 
required by message-passing implementations. 

(4) Since individual blocks are treated sequentially, a simple dynamic block management 
algorithm can be applied to avoid performing unnecessary operations. 

( 5 )  The use of standard Fortran 90 facilitates code portability between different platforms. 
(6) Acceptable performance can be obtained on current MPP systems supporting the data- 

parallel programming method. 
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The present study has shown that appropriate choices of initial and boundary conditions and 
solution procedure should be employed together with the use of parallel computation methods 
to minimize the time required to obtain the flow solution. 

Finally, the serial data-parallel multiblock method has been applied in the present study to 
the computation of a CFD problem using a block-structured mesh. However, such a method 
could also be applied to computationally intensive problems in other application areas for which 
the data-parallel programming model has been shown to be well suited. 
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