
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 19,707-721 (1994)

A DATA-PARALLEL APPROACH TO MULTIBLOCK FLOW
COMPUTATIONS

M. L. SAWLEY AND J. K. TEGNER
Institut de Machines Hydrauliques et de Micanique des Fluides, Ecole Polytechnique Federale & Lntuanne, CH-I015

Lausanne, Switzerland

SUMMARY

Multiblock methods are often employed to compute flows in complex geometries. While such methods
lend themselves in a natural way to coarse-grain parallel processing by the distribution of different blocks
to different processors, in some situations a fine-grain data-parallel implementation may be more
appropriate. A study is presented of the resolution of the Euler equations for compressible flow on a
block-structured mesh, illustrating the advantages of the data-parallel approach. Particular emphasis is
placed on a dynamic block management strategy that allows computations to be undertaken only for
blocks where useful work is to be performed. In addition, appropriate choices of initial and boundary
conditions that enhance solution convergence are presented. Finally, code portability between five different
massively parallel computer systems is examined and an analysis of the performance results obtained on
different parallel systems is presented.

K E Y WORDS Data-parallel Block-structured mesh Compressible flow Load balancing Boundary conditions
Code portability

1. INTRODUCTION

Computational fluid dynamics (CFD) methods are generally based on the resolution of a set of
partial differential equations-such as the Euler equations for inviscid flow or the Navier-Stokes
equations for viscous flow-that describe the continuum behaviour of the fluid. These differential
equations are discretized using e.g. a finite difference, finite element or finite volume method
and the resulting set of algebraic equations is solved on a computational mesh that covers the
physical flow domain. For the computation of flows in complex geometries the rnultiblock method
is widely employed. This method is based on the partitioning of the flow domain into a number
of subdomains (blocks). Block-structured meshes are generally unstructured at the block level
but retain a structured nature within each block. Multiblock methods provide an alternative to
the use of a completely unstructured mesh and, depending on the problem at hand, may offer
certain advantages, such as the use of simpler and more efficient algorithms to resolve the
required flow equations.

Parallel techniques for the above-mentioned CFD methods are based on the computation of
the flow values at different mesh points on different processors. Block-structured meshes exhibit
both a coarse-grain parallelism at the block level and a fine-grain parallelism at the mesh point
level. For efficient parallel computation the granularity of the problem needs to be matched to
that of the parallel computer employed. Coarse-grain parallelism has been exploited in CFD
calculations by a number of researchers using either shared-memory multiprocessor compu-
t e r ~ ' - ~ or distributed-memory massively parallel MIMD (multiple-instruction, multiple-data)

CCC 0271-2091/94/200707-15
0 1994 by John Wiley & Sons, Ltd.

Received January I994
Revised May 1994

708 M. L. SAWLEY AND J. K. TEGNER

computers.’”’-6 These implementations have employed a control-parallel programming model
whereby different blocks are computed in an independent manner on different processors, with
information being transferred between blocks using either the (virtual) shared memory or
message passing.

Control-parallel multiblock methods can be efficiently employed if the mesh is comprised of
blocks having equal computational work, the computer has processors of equal computational
power and the number of blocks is equal to or a multiple of the number of processors. Under
these conditions load balancing between processors ensures that there is minimal processor idle
time. For many flow computations the mesh is specially designed such that these requirements
are met. Since generating an appropriate block-structured mesh for a complex geometry may
take longer (in ‘real’ time) than the resolution of the flow equations on the mesh, it is desirable
that parallelization constraints are not imposed on the mesh generation procedure in addition
to the existing geometrical constraints. Generally, except for very complex 3D geometries, the
number of blocks that is consistent with the geometrical constraints is of the order of ten(s).
Therefore, without further subdivision, Computations can only be performed with such block-
structured meshes using computers with a limited number of processors. A further complication
for the efficient implementation of control-parallel multiblock methods arises from the fact that
the computational work of a block is not necessarily determined solely by the number of mesh
points in the block. Depending on the nature of the flow to be computed, some blocks may
require a larger number of iterations to obtain the desired level of convergence. If the final
converged solution has been obtained in a block, further iteration will not entail useful work
even though the floating point operation count will increase. To take account of such behaviour,
various dynamic load-balancing algorithms have been proposed, such as the ‘demand decom-
position’ technique described in Reference 5.

The fine-grain parallelism exhibited at the mesh point level of a structured mesh is well suited
to the data-parallel programming model whereby different processors undertake the necessary
computations of different mesh points in a synchronous manner. Data-parallel techniques have
been employed by a number of authors in recent years for CFD applications on SIMD
(single-instruction, multiple-data) computers, both for single-block-structured and
unstructured meshes. I Data-parallel implementations on present-generation parallel compu-
ters generally make use of a Fortran-90-based language to render implicit the distribution of
work to the different processors. This greatly simplifies programme coding and enhances
portability. Such implementations have been found to be very efficient for local approximation
techniques such as employed in the above-mentioned CFD methods.

While the application of the data-parallel programming model to date appears to have been
limited to computations based on single-block-structured meshes and unstructured meshes, it
can also be employed for computations using block-structured meshes. A study has therefore
been undertaken to investigate a serial data-parallel multiblock method whereby individual blocks
are treated in a sequential manner, the solution in each block being computed using a
data-parallel approach. The present paper provides an illustration of the advantages that this
method affords. In Section 2 the flow equations and the test case considered are presented, while
the numerical implementation employed is described in Section 3. Since the different blocks are
treated in a sequential manner, a relatively simple dynamic block management procedure has
been employed as described in Section 4. The serial data-parallel multiblock method has been
implemented on five different massively parallel processing (MPP) systems; a brief overview of
these systems is given in Section 5. Code portability between the different systems is discussed
in Section 6. Finally, Section 7 presents an analysis of the performance results obtained on
different MPP systems.

DATA-PARALLEL MULTIBLOCK FLOW COMPUTATIONS 709

2. FLOW EQUATIONS AND APPLICATION

The Euler equations governing inviscid compressible flow can be written in a conservative law
form in a two-dimensional (x, y) Cartesian co-ordinate system as

a a a
at ax aY
~ w + - F(w) + - G(w) = 0,

where

Here p is the mass density, p is the pressure, E is the total energy and (u, u) are the (x, y)
components of the flow velocity. The above system of equations is closed via the equation of state

p = p(y - 1)[E - + u2)-j,

where y is the ratio of specific heats (y = 1.4).
As an application we consider here the flow in a supersonic air intake. A freestream Mach

number of 1-865 and a back pressure (static pressure at diffuser exit/freestream total pressure)
equal to 083 have been imposed. The resulting flow, as shown in Figure 1, is characterized by
an oblique shock that impinges on the cowl lip, followed by a series of reflected shocks in the
diffuser section. After termination by a normal shock the flow becomes subsonic. A study of
this simplified two-dimensional case can yield valuable information on the optimization of air
flow at the diffuser exit. This flow case has been studied by the French aircraft engine
manufacturer Snecma in the development of a power plant for the replacement of the Concorde
supersonic aircraft.' *

Figure 1. Pressure contours for inviscid flow in a supersonic air intake. The straight lines represent the block boundaries

710 M. L. SAWLEY AND J. K. TEGNkR

3. NUMERICAL IMPLEMENTATION

The serial data-parallel multiblock method has been implemented in a relatively simple code'
that solves the time dependent Euler equations for two-dimensional, inviscid, compressible flow.
Results obtained using a data-parallel single-block version of this code have been reported
previously.'

3.1. Discretization

The Euler equations are discretized in space using a finite volume formulation with a central
difference scheme. Numerically induced oscillations near discontinuities (shock waves) are
damped by the addition of a second-order artificial dissipation term. A fourth-order dissipation
term is included to damp odd/even oscillations permitted by the numerical scheme. The resulting
set of discretized equations is integrated in time using an explicit five-stage Runge-Kutta scheme.
To enhance convergence to the required steady state, a local time-stepping technique is employed.

3.2. Computational mesh

To compute the flow field in the air intake, a block-structured mesh comprised of eight blocks
has been employed. The construction of this mesh has been based on geometric considerations,
with smaller blocks allocated to regions of greater interest (see Figure 1:). Each block contains
the same number of mesh cells; this choice is not related to load-balancing concerns but to the
algorithm employed in the code, which is restricted to directly connected blocks. The number
of mesh cells in each block (124 x 124), however, has been chosen to maximize performance on
the MPP systems employed (see Section 7). While a control-parallel method could be efficiently
used for such a block-structured mesh on a computer system comprised of eight processors of
equal performance, additional artificial subdivision of the mesh would be required for larger
parallel systems.

3.3. initial and boundary conditions

An extensive study of the air intake problem has shown that the convergence of the solution
procedure is particularly sensitive to the initial conditions and the boundary condition imposed
at the diffuser outflow. Therefore, to maximize code performance-measured with respect to the
computer time required to obtain the required flow solution-appropriate optimization of the
initial and boundary conditions is crucial.

Indeed, by simply imposing freestream conditions throughout the flow domain and the back
pressure fixed at the required value of 0.83, it has been observed that the normal shock in the
diffuser section is not stabilized and thus convergence is not obtained. This problem can be
avoided by setting the initial flow solution to include a normal shock in the diffuser section.
For convenience the initial position of the normal shock has been chosen to correspond to a
block boundary. Downstream of the normal shock the initial flow is subsonic and determined
from the standard normal shock relations. Supersonic flow was initially set in four of the eight
blocks and subsonic flow in the four blocks in the downstream section of the diffuser.

This choice of initial condition enables the outflow to be always subsonic. A non-rejecting
outflow boundary condition for subsonic flow based on the following differential e q ~ a t i o n ' ~ has
been employed:

DATA-PARALLEL MULTIBLOCK FLOW COMPUTATIONS 71 1

where p , = O.83pT,, is the required outflow pressure and a is a parameter chosen to optimize
the convergence rate (a = 1.25 for the present computations).

The above-described non-reflecting boundary condition has been found to be necessary in
the initial stages of the solution procedure. Once the outflow pressure has stabilized close to the
required value p,, this value is directly imposed. In practice the non-reflecting boundary
condition is imposed only during the iteration to the first convergence level (see Section 4),
allowing a significant saving in computation time.

3.4. Code structure

The code employed in the present study stores in global arrays the values of the flow quantities
throughout the flow domain. For the serial data-parallel multiblock method the global values
for one block are copied to corresponding local arrays which contain an additional exterior
layer of ‘ghost cells’ to provide data locality and facilitate the application of boundary conditions.
The computation is performed using the local arrays in a manner similar to that for a single-block
mesh.’ The updated local array values are then returned to the global arrays. Data are transferred
between different blocks (block connectivity) at each time step via the global arrays in an implicit
fashion using the globally addressable memory. After the global array elements for one block
are updated, the other blocks are treated in a sequential manner.

The code is written entirely in Fortran 90, using array assignments and intrinsic functions.
Data distribution directives are used to map the arrays to the processors in such a way as to
minimize communication (see Section 7). Extensive use is made of intrinsic functions, particularly
the CSHIFT function that causes a circular shift of the array values by one element, either
row-wise or column-wise.

4. DYNAMIC BLOCK MANAGEMENT

Since the blocks are treated in a sequential manner, a rather simple dynamic block management
strategy has been employed. Every 20 iterations the values of the RMS (root mean square)
residuals in each block (based on the local density) are calculated. The residual values are used
to determine which of the blocks are to be considered for the next 20 iterations. The criterion
for a block to be ‘on’ is that the maximum residual in the block or at the appropriate ghost
cells in neighbouring blocks be greater than a predetermined convergence level. In this manner
the computation is performed only in blocks where there is useful work to be done. Not only
are blocks switched off to avoid unnecessary computations, but they are also switched back on
should the development of the solution in a neighbouring block produce an influence. Initially
the convergence level is set to 2.5 x lo-’. When all blocks are converged, this value is decreased
by a factor of 10, all blocks are switched back on and further iterations performed. This procedure
is continued until the RMS residual over the entire flow domain is less than 2 x lo-’,
corresponding to a total decrease in the residual of five orders of magnitude.

This dynamic block management strategy has been chosen to minimize the number of
iterations required to obtain the converged flow solution and therefore to maximize the useful
work performed. Such a strategy maintains the level of convergence in all blocks within certain
bounds and thus avoids accumulation effects associated with large differences in the treatment
of neighbouring blocks.

Figure 2(a) shows the residual of each of the eight blocks employed as a function of the number
of iterations. Figure 2(b) presents the residual over the entire flow domain as a function of work
units (one iteration of one block being defined as one-eighth of a work unit). The two

712 M. L. SAWLEY AND J. K. fEGN6R

-2

-3

-4

-5

-6

-7

-8

Iteration number
Figure 2(a). Convergence history for each of the eight blocks

0 5000 10000 15000 20000

Work units
Figure 2(b). Maximum residual in the flow domain as a function of work units, both with (-) and without (----)

dynamic block management

curves of Figure 2(b) correspond to cases with and without the application of dynamic block
management.

From Figure 2(a) it can be observed that after a relatively small number of iterations
(approximately 400) two blocks are switched off; a third block is switched off after 600 iterations
and a fourth after lo00 iterations. The first two blocks correspond to the upstream section of
the flow domain, the third to the region above the cowl lip of the air intake and the fourth to

DATA-PARALLEL MULTIBLOCK FLOW COMPUTATIONS 713

the first block in the diffuser section. It should be noted that the flow in each of these regions
is supersonic. Since the Euler equations are hyperbolic for supersonic flow, there is no upstream
influence. (The same is valid, to a good approximation, for the discretized equations if the added
artificial dissipation is sufficiently small.) Therefore, unless a subsonic region of the transient
solution enters upstream, once the predefined convergence level is attained, no more useful work
can be performed. Approximately 4OOO iterations are required before the first convergence level
is attained, with an additional 5000 iterations required to reach each of the subsequent
convergence levels.

For the present problem Figure 2(b) demonstrates that employing the above-described
dynamic block management leads to a reduction by a factor greater than two in the amount of
work required to obtain the converged solution in the entire flow domain. In fact, for the majority
of iterations i t has been necessary to compute at most four of the eight blocks. The overhead
required for the dynamic block management, both in coding effort and in computation time, is
minimal.

5. PARALLEL COMPUTERS EMPLOYED

Computation of the air intake flow problem has been undertaken using the following MPP
systems.

MP-I and MP-2-MasPar Computer Corp.

The MP-1 and MP-2 are STMD computers that employ the same architecture based on a
two-dimensional torus grid." Each processing element (PE) consists of a simplified RISC
processor with 64 kbyte of local memory. The X-Net communication network has a bandwidth
of 1.25 Mbyte s- per PE between neighbouring PEs, while a global router provides communica-
tion between arbitrary PEs with a bandwidth of 80 kbyte s - ' per PE. A fully configured system
has 16k PEs, giving a total of 1 Gbyte of distributed memory and a peak 64-bit floating point
performance of 0.55 and 2.4 Gflop s - ' for the MP-1 and MP-2 systems respectively.

CM-200-Thinking Machines Corp.

The CM-200 is an SIMD computer that uses a hypercube architecture.I6 Each node consists
of 32 single-bit PEs, 4 Mbyte of local memory and a floating point accelerator. Communication
between nearest neighbours on a Cartesian mesh uses the NEWS network with a bandwidth of
40 Mbyte s- ' per node; the global router provides more general communication. The largest
CM-200 employed in the present study has lk nodes with 4 Gbyte of distributed memory and
a peak @-bit floating point performance of 10 Gflop s- '.

CM-5- Thinking Machines Corp.

The CM-5 is an MIMD system with each user partition consisting of both a control node
and a number of processing nodes." Each processing node has a standard RISC Sparc
microprocessor with four vector pipes (each having eight 64-bit registers or 16 32-bit registers
using a vector length of 8) to a total of 32 Mbyte of local memory, providing a peak 64-bit
floating point performance of 128 Mflop s - ' , Data are transferred between nodes via a network
that uses a 4-ary fat-tree with a maximum bandwidth of 20Mbytes-' per node between
neighbouring nodes.

714 M. L. SAWLEY AND J. K. TEGNER

T3D emulator-Cray Research Inc.

The Cray T3D is an MIMD system with each PE containing a DEC Alpha RISC micro-
processor having a peak 64-bit floating point performance of 150 Mflop s-' . ' ' The computa-
tional nodes, each containing two PEs, are connected via a 3D torus network (300 Mbyte s - '
per node between neighbouring nodes). The system contains either 16 or 64 Mbyte of memory
per PE. Although a Cray T3D system has not been available for the present work, an emulator
that runs on a Cray Y-MP has been employed to study code implementation.

Each of the above MPP systems has a non-uniform memory access (NUMA) distributed
memory whereby a PE (or node) can access its local memory faster than it can access the memory
of other PEs. Such an architectural consideration has an important impact on the programming
techniques required to achieve acceptable performance (see Section 7).

All the above systems offer Fortran compilers that can make use of the data-parallel
programming model. The syntax employed in these compilers is based on the Fortran 90
standard, with a number of additions/modifications necessary for parallelization. In addition,
the CM-5 and T3D systems provide other programming models (message passing, work sharing),
although these have not been employed in the present study.

6. CODE PORTABILITY

The subject of code portability is of major importance, particulary for application software
developed for parallel computer systems. Code portability is concerned with two principal
aspects: compilation on different computer platforms and the ability to achieve an acceptable
performance level.

6.1. Compilation

The use of standard Fortran 90 style has made relatively simple the task of compiling the
code on each of the five above-mentioned MPP systems. In addition, the code has been compiled
and run on both serial and vector/parallel computer systems. Particular deficiencies of the MPP
systems that were found to require code modification to enable compilation include

(1) the lack of standard data distribution directives (the systems employed in the present study
used the CMPF MAP, CMFS LAYOUT, and CDIRS SHARED directives to achieve
suitable array mappings)

(2) the need for internal compiler directives on the Cray T3D (e.g. the CDIRS MASTER and
CDI RS ENDMASTER directives to specify serial and parallel execution regions)

(3) the lack of standard timing routines
(4) features currently unavailable on the Cray T3D emulator (e.g. certain restrictions for

do-loops and intrinsic function calls).

6.2. Performance

While adhering to the Fortran 90 standard has enabled the code to be run on serial,
vector/parallel and MPP systems, it does not guarantee that the performance obtained on each
of these platforms will be acceptable. Optimal code performance has been found to be inhibited
by the following factors.

DATA-PARALLEL MULTIBLOCK FLOW COMPUTATIONS 715

(1) Different MPP systems have different ‘canonical’ data distributions; non-canonical dis-
tributions may cause performance degradation (e.g. the serial axes of the global arrays
are placed first on the CM-200 and CM-5 but last on the MP-1, MP-2 and T3D).

(2) While different means may be available in Fortran 90 for expressing the same operation,
these are not always interpreted by the compiler in the same manner (e.g. on the CM-200
direct array assignment may use the global router, whereas the equivalent CSHIFT function
call uses the NEWS network).

(3) The use of software library routines may greatly improve performance at the expense of
portability (such routines, however, have not been employed to obtain the results presented
in Section 7).

(4) Optimized data-parallel code for MPP systems may have many redundant operations (e.g.
for the treatment of ghost cells to avoid the need for masking and hence decrease
overheads), resulting in poor performance on serial and vector computers.

(5) The use of array syntax and calls to intrinsic functions can limit the length of vector loops
to single programme statements, causing serious performance degradation on vector
computers.

Some of the above portability restrictions are due to the present immaturity of compilers; it is
thus to be expected that portability problems may become less important in the future. However,
the performance of the serial data-parallel multiblock method on MPP systems is strongly
dependent on the ability of the compiler to interpret code in an efficient manner for data-parallel
computations. This will in turn be dependent on both hardware and software considerations.

7. CODE PERFORMANCE

The study and comparison of code performance on different computer systems-and the
interpretation of such comparisons-are fraught with danger. 1920 The goal of the present paper
is not to present a benchmarking study for the present code, but rather to provide an indication
of the programming effort required to obtain acceptable performance on the MPP systems
considered.

While five different MPP systems have been considered in the present study, performance
figures are presented only for the MP-1, MP-2, CM-200 and CM-5 systems, since the data-
parallel Fortran compiler for the T3D hardware has not yet been released. The results obtained
on the CM-5 are based on a beta version of the system software and consequently are not
necessarily representative of the performance of the full version of this software.

The performance of the multiblock flow solver is determined by the time required for the
following tasks:

(1) copying flow values between the global and local arrays (before and after the computation

(2) performing the computational kernel (computing the convective and numerical fluxes, time

(3) implementing the boundary conditions
(4) undertaking the block connectivity
(5) input/output (e.g. reading mesh and initial flow values, writing solution).

of each individual block)

stepping)

Each of the above tasks involves the transfer of data, which for the NUMA distributed-memory
MPP systems used in the present study is a major concern. In order to maximize performance,
the most rapid means of data transfer must therefore be employed (see Figure 3). (For serial

716 M. L. SAWLEY AND J. K. TEGNkR

(high bandwidth network)

distant PE rnernoty (global router)

increasing increasing
access time bandwidth

Figure 3. Communication hierarchy for an NUMA distributed memory parallel computer

and vector computers data transfer between arrays stored in memory is not a consideration;
thus performance is generally determined by task (2).)

For optimal performance of a control-parallel method the elements of a local array (corre-
sponding to one block) are stored in the same local PE memory. This ensures that the
computational kernel for each block can be performed by the same PE without communication
with other PEs. In contrast, in the present data-parallel method the elements of both global and
local arrays are distributed across different PEs. However, the distribution is chosen in such a
way that all flow values for one mesh cell are stored in the same PE memory; copying flow
values between the global and local arrays thus involves only local memory references. Task (1)
can therefore be performed very efficiently.

For a local approximation method, such as the finite volume method used in the present
study, the computational kernel involves the addition and subtraction of neighbouring elements
according to a stencil determined by the spatial discretization employed. The associated data
transfer can be performed using the CSHIFT intrinsic function. If the number of array elements
is less than or equal to the number of PEs, the CSHIFT operation will direct all PEs to obtain
an array value from a different PE; the CSHIFT operation will therefore involve all remote
memory references. For much larger arrays, however, the majority of the CSHIFT operations
will involve local memory references. For NUMA distributed-memory MPP systems the
efficiency of such an operation will therefore increase with the problem size.' This indicates that
for optimal performance on a given MPP system the number of mesh cells in each block needs
to be as large as possible; thus for a given size computational mesh the number of blocks should
be minimized. This requirement will generally not be in conflict with the need to simplify the
mesh generation procedure. The efficiency with which task (2) can be performed is therefore
dependent on the efficiency of the CSHIFT operation, the number of PEs employed and the
problem size (number of blocks and mesh cells). High-bandwidth networks are provided on the
MPP systems to perform communication between neighbouring PEs.

The implementation of the boundary conditions (task (3)) and block connectivity (task (4))
generally requires more complex patterns of data transfer. It is important that, if possible, the
above-mentioned high-bandwidth networks are used rather than the slower global communica-
tion network. For the present code implementation this consideration has necessitated the

DATA-PARALLEL MULTIBLOCK FLOW COMPUTATIONS 717

replacement of array section assignment statements with the equivalent CSHIFT intrinsic
functions to enforce the use of the fast network on the CM-200 and CM-5.

The relative importance of input/output (task (5)) depends on the initialization procedure,
the amount of data being read and written and where these data are stored (e.g. front-end disk,
parallel disk array). For the present computation of the converged flow solution this contribution
was of secondary importance and therefore not considered in the following performance
figures.

In Figure 4 is presented, for MP-1 and MP-2 systems with 16k PEs and CM-200 and CM-5
systems with 512 nodes, the time required to perform the block connectivity (task (4)), the
boundary conditions (task (3)) and the computational kernel (task (2)). The performance obtained
using MPP systems of different sizes is shown in Figure 5. Since the same problem has been
resolved for each system size, the performance is inversely proportional to the time required to
obtain the converged flow solution.

Figure 4 indicates that for the computation of the flow in the air intake the majority of time
is spent performing the computational kernel. Nevertheless a significant fraction is also required
for the implementation of the boundary conditions. The overhead required for block connectivity
is acceptably low (about 7% for the MP-1, MP-2 and CM-5 systems, though substantially
higher for the CM-200). These fractions could be reduced by the simultaneous application of
boundary conditions and block connectivity on all four sides of each block, at the cost of
increased programming complexity and reduced generality. Measurements made for different
size MPP sytems show that the block connectivity overhead remains approximately constant
for the MP-1 and MP-2 systems, while the percentage of the total elapsed time required for the

9000

0000

7000

6000
a3
In
Y

2 4000

0 3000

\n a
m -

2000

1000

0
MP-1 MP-2 CM-200 CM-5

(16K) (16K) (512) (512)

Figure 4. Elapsed time required for different tasks for four different MPP systems

718 M. L. SAWLEY AND J. K. TEGNkR

400

300

2 0 0

100

0

400

0 4 0 12 16

Number of PE5 [lK]

I I I I I , ,

0 256 512 768 1024

Number o f nodes

Figure 5. Performance(64-bit) as a function of the size of the MPP system: 0, MP-I; V, MP-2; 0, CM-200; A, CM-5

boundary condition implementation increases from 10% for lk PEs to 23% for 16k PEs. For
the CM-200 the block connectivity overhead decreases from 18% for 128 nodes to 7.5% for lk
nodes, while both the computational kernel and the application of the boundary conditions
increases with increasing system size. In contrast, for the CM-5 the relative time required for
the different tasks has been found to be independent of the system size in the range from 32 to
5 12 nodes.

Figure 5(a) shows that on both the MP-1 and MP-2 the performance scales linearly with the
number of PEs employed. Such a scaling is to be expected, since the number of mesh cells in

DATA-PARALLEL MULTIBLOCK FLOW COMPUTATIONS 719

each block is always greater than or equal to the number of PEs. Since each local array has a
total of 128 x 128 elements, for a system with 16k PEs each PE performs the work for a single
mesh cell. For systems having a smaller number of PEs, block (hierarchical) virtualization has
been employed.' On the other hand, if a block-structured mesh with fewer cells per block was
used, the performance on a system with 16k PEs would be degraded, since not all PEs would
be active. The performance on the CM-200 and CM-5, presented in Figure 5(b), does not exhibit
the same linear scaling with system size. Indeed, for the CM-5 the performance per node decreases
significantly with increasing system size. Profiling information has shown that as the size of the
CM-5 system increases, the ratio of time spent on communicating between nodes to that needed
for floating point operations increases significantly.

It is interesting to note that while the peak floating performance per PE of the MP-2 is over
four times that of the MP-1, the performance obtained using the CFD code employed in the
present study is only a factor of two larger. Thus, while a performance of approximately 33%
of the peak value has been measured for the MP-1 system, only 17% of the peak value for the
MP-2 is obtained. For both the CM-200 and CM-5 systems the measured performance for the
present CFD code is only a small percentage of the peak performance of these systems. These
observations reinforce the fact that the peak performance of an MPP system is not the sole
relevant measure of its performance ability. The numerical method employed for the present
flow calculations requires a high level of communication between PEs (or nodes); an efficient
computation therefore necessitates a balanced MPP system with a sufficiently high communica-
tion bandwidth.

Finally, it should be remarked that the present study is concerned with the computation of
a two-dimensional flow problem having a fixed number of mesh cells per block. A previous
study' has shown that the performance obtained using a data-parallel approach depends strongly
on the size of the computational problem. Higher performance levels are to be expected for
high-resolution three-dimensional flows (e.g. for the direct numerical simulation of turbulent
flows) and for more complex numerical schemes involving a greater number of floating point
operations per iteration.

8. CONCLUSIONS

The present study has shown that the serial data-parallel multiblock method provides the
following advantages.

(1) It retains the simplicity of the data-parallel approach, each block being treated individually
in the same manner as for a single-block computation.

(2) It does not impose any parallelization constraints on the mesh generation procedure; in
principle, any number of blocks of unequal size can be employed (although power-of-two
size arrays are preferable for performance reasons).

(3) The transfer of data between blocks (block connectivity) is performed in a transparent
manner via globally addressable memory; this contrasts with the explicit data transfer
required by message-passing implementations.

(4) Since individual blocks are treated sequentially, a simple dynamic block management
algorithm can be applied to avoid performing unnecessary operations.

(5) The use of standard Fortran 90 facilitates code portability between different platforms.
(6) Acceptable performance can be obtained on current MPP systems supporting the data-

parallel programming method.

720 M. L. SAWLEY AND J. K. TEGNkR

The present study has shown that appropriate choices of initial and boundary conditions and
solution procedure should be employed together with the use of parallel computation methods
to minimize the time required to obtain the flow solution.

Finally, the serial data-parallel multiblock method has been applied in the present study to
the computation of a CFD problem using a block-structured mesh. However, such a method
could also be applied to computationally intensive problems in other application areas for which
the data-parallel programming model has been shown to be well suited.

ACKNOWLEDGEMENTS

The authors wish to thank Magnus Bergman (KTH, Stockholm), Tom MacDonald (Cray
Research), Roch Bourbonnais (Thinking Machines) and Bjorn Malmberg (DEC) for their
assistance in the present study. Acknowledgement is gratefully made for access to the MP-1
(KTH; MasPar Computer Corp., Sunnyvale), MP-2 (University of Bergen), CM-200 (KTH;
AHPCRC, University of Minnesota) and CM-5 (IPG, Paris; AHPCRC) systems. The T3D
emulator installed on the Cray Y-MP 4E of the EPFL was also employed. The study was
supported by the Fonds National Suisse and by a contract between the U.S. Army Research
Office and the University of Minnesota for the Army High Performance Computing Research
Center.

REFERENCES

1 . C. Mensink and H. Deconinck, ‘A 2D parallel multiblock Navier-Stokes solver with applications on shared- and
distributed-memory machines’. in Ch. Hirsch, J. Periaux and W. Kordulla (eds), Computational Fluid Dynamics ’92,
Elsevier, Amsterdam, 1992, pp. 91 3-920.

2. Y. Yadlin and D. A. Caughey, ‘Block implicit multigrid solution of the Euler equations’, in H. D. Simon (ed.),
Parallel Computational Fluid Dynamics: Implementations and Results, MIT Press, Cambridge, MA, 1992, pp. 127- 145.

3. M. L. Sawley, ‘Control- and data-parallel methodologies for flow calculations’, Proc. Supercomputing Europe ‘93,
Utrecht, February 1993, pp. 169-187.

4. J. Hauser and R. Williams, ‘Strategies for parallelizing a Navier-Stokes code on the Intel Touchstone machines’,
Int. j . numer. methodsjuids, 14, 51-58 (1992).

5. D. M. Smith and S. P. Fiddes, ‘Efficient parallelisation of implicit and explicit solvers on a MIMD computer’, in
R. B. Pelz, A. Ecer and J. Hauser (eds), Parallel Computational Fluid Dynamics ’92, North-Holland, Amsterdam,
1993, pp. 383-394.

6. E. Schreck and M. Peric, ‘Computation of fluid flow with a parallel multigrid solver’, Int. j. numer. methodsfluids,

7. P. Olsson and S. L. Johnsson, ‘A dataparallel implementation of an explicit method for the three-dimensional
compressible Navier-Stokes equations, Parallel Comp., 14, 1-30 (1990).

8. M. L. Sawley and C. M. Bergman, ‘A comparative study of the data-parallel approach for compressible flow
calculations’, Parallel Comput., 20, 363-373 (1994).

9. F. P. Brueckner, D. W. Pepper, T. H. Sobota and R. H. Chu, ‘The calculation of three-dimensional compressible
flow through a rectangular nozzle using a data parallel finite element model’, in R. B. Pelz, A. Ecer and J. Hauser
(eds), Parallel Computational Fluid Dynamics P2. North-Holland, Amsterdam, 1993, pp. 5 1-62.

10. S . W. Hammond and T. J. Barth, ‘Efficient massively parallel Euler solver for two-dimensional unstructured grids’,
AIAA J., 30,947-952 (1992).

1 1 . Z. Johan, T. J. R. Hughes, K. K. Mathur and S. L. Johnsson, ‘Data parallel finite element techniques for
computational fluid dynamics on the Connection Machine systems’, in R. B. Pelz, A. Ecer and J. Hauser (eds),
Pardel Computational Fluid Dynamics 92, North-Holland, Amsterdam, 1993, pp. 21 > 2 B .

12. G. Freskos and 0. Penanhoat, ‘Numerical simulation of the flow field around supersonic air-intakes’, ASME Paper

13. C. M. Bergman, ‘Development of numerical techniques for inviscid hypersonic flows around re-entry vehicles,’ Ph.D.

14. D. H . Rudy and J. C. Strikwerda, ‘A nonreflecting outflow boundary condition for subsonic Navier-Stokes

15. J. R. Nickolls, ‘The design of the MasPar MP-I: a cost effective massively parallel computer’, Proc. IEEE Compcon,

16, 303-327 (1993).

92-GT-206, 1992.

Thesis 34I, Institut National Polytechnique de Toulouse, 1990.

calculations‘, J. Comput. Phys., 36, 55-70 (1980).

Spring 1990, IEEE, New York, 1990, pp. 25-28.

DATA-PARALLEL MULTIBLOCK FLOW COMPUTATIONS 72 1

16. The Connection Machine CM-200 Series Technical Summary, Thinking Machines Corp., Cambridge, MA, 1991.
17. The Connection Machine CM-5 Technical Summary, Thinking Machines Corp., Cambridge, MA, 1991.
18. W. Oed, The Cray Research Massively ParallelProcessor System CRA Y T3D. Crav Research GmbH. Munich. 1993. - -
19. D. H. Bailey, 'Twelve ways to fool the masses when giving performance results on parallel computers', Supercomputer,

20. R. Hockney, 'A framework for benchmark performance analysis,' Supercomputer, 48.9-22 (1992).
45, 4-7 (1991).

